Neural Networks

Lecture 17
Boltzmann Machines as Probabilistic
Models



Modeling binary data

e Given a training set of binary vectors, fit a model that will
assign a probability to other binary vectors.

— Useful for deciding if other binary vectors come from
the same distribution.

— This can be used for monitoring complex systems to
detect unusual behavior.

— If we have models of several different distributions it
can be used to compute the posterior probability that
a particular distribution produced the observed data.

p(data | Model 1)

> p(data|Model j)
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p(Model 1| data) =



A naive model for binary data

For each component, |, compute its probability, pj,
of being on in the training set. Model the
probability of test vector alpha as the product of
the probabillities of each of its components:
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A mixture of naive models

 Assume that the data was generated by first
picking a particular naive model and then

generating a binary vector from this naive
model.

— This is just like the mixture of Gaussians, but
for binary data.
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Limitations of mixture models

 Mixture models assume that the whole of each data vector
was generated by exactly one of the models in the mixture.

— This makes Is easy to compute the posterior distribution
over models when given a data vector.

— But it cannot deal with data in which there are several
things going on at once.

mixture of 10 models mixture of 100 models
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Dealing with compositional structure

« Consider a dataset in which each image contains N
different things:

— A distributed representation requires a number of
neurons that is linear in N.

— A localist representation (i.e. a mixture model)
requires a number of neurons that is exponential in N.
« Mixtures require one model for each possible combination.

« Distributed representations are generally much harder to
fit to data, but they are the only reasonable solution.

— Boltzmann machines use distributed representations
to model binary data.



How a Boltzmann Machine models data

e |tis not a causal generative model (like a
mixture model) in which we first pick the hidden
states and then pick the visible states given the
hidden ones.

e |nstead, everything is defined in terms of
energies of joint configurations of the visible and
hidden units.



The Energy of a joint configuration

binary state of unit i in joint
configuration alpha, beta
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Using energies to define probabilities

* The probability of a joint
configuration over both visible
and hidden units depends on

the energy of that joint
configuration compared with
the energy of all other joint
configurations.

The probability of a
configuration of the visible
units is the sum of the
probabilities of all the joint

configurations that contain it.
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An example of how weights define a distribution

v h —E eF p(v,h) p(v)
11 11 2 7.39 186
11 10 2 7.39 186
11 01 1 272 o069 0.466
11 000 1 025
10 11 1 272 069
10 10 2 7.39 186
10 01 0 1 o025 0.305
10 00 0 1 025

11 0 1 025

10 0 1 025

01 1 272 069

00 0 1 025
00 11 -1 037 009
00 10 0 1 025
00 01 O 1 o5 0.084
00 00 O 1 025

total =39.70
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Getting a sample from the model

 If there are more than a few hidden units, we cannot
compute the normalizing term (the partition function)
because it has exponentially many terms.

e S0 use Markov Chain Monte Carlo to get samples from
the model:

— Start at a random global configuration

— Keep picking units at random and allowing them to
stochastically update their states based on their
energy gaps.

— Use simulated annealing to reduce the time required
to approach thermal equilibrium.

o At thermal equilibrium, the probability of a global
configuration is given by the Boltzmann distribution.



Getting a sample from the posterior
distribution over distributed representations
for a given data vector

 The number of possible hidden configurations is
exponential so we need MCMC to sample from
the posterior.

— It Is just the same as getting a sample from
the model, except that we keep the visible
units clamped to the given data vector.

e Only the hidden units are allowed to change states

 Samples from the posterior are required for
learning the weights.



